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ABSTRACT

The deslgn ancd evaluatlon of c¢ylindrical furmaces, kilns, reactors, and
other devices in which radlant heat transfer 1s important requires knowledge
of shape factors 1n order to assess the energy transfer by radiation. Analytical
expressions for the shape factors of various cylindrical assemblies, some hereto-

fore unavallable, have heen obtalned and tabulated.
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Introduction

COMPILATION OF RADIATION SHAPE FACTORS
FOR CYLINDRICAL ASSEMBLIES

By H. Leuenberger and R, A. Person

For the design and evaluation of furnaces, kilns, reactors, driers, and
other process equipment of cylindrical shaps, in which radiant heat interchange
can be significant, it is advantagecus to have accurate and complete knowledge
of geometric shape factors to assess reliebly the radiant heat interchange,

The technical literature contains values for & number of shape factors,
some in the form of apalytical expressions and aome ae numerical approximations
or graphical solutions, A large proportion < thie information wae obtained for
assemblies of semi-infinite or differential dimensions, which can be dealt with
fair-ljf easily. The analytical treatmsnti of the technically important configur-
ations or finite dimensions ie mcre comgplicated, and recourse has usually beeén
had to approximations only.

Anslytical and graphical presentations of shape factore for certain
elementary configurations were initially given by Hottel 0,2,3)} These factors or
their equivalents have since appeared in many heat transfsr texts(,,9 and elso-
where, together with numerous examples of their use, The recognized need for

reliable shape factor data for additional assembliss led the National Advisory

Committ®e for Aeronautics to sponsor further study(é}, While the avallable AE—

coverage of elementary configurations has bsen wide, few cylindricel assemblies
hava been treated, and the results are not conveniently available, Again most O
of this information is given in the form of numerical tabulationa and graphs, —-—'1

The present work on shape factors from the beginning aimed at the obtain-

ment of, if possible, exact analyuvical expressicns for shape factors of cylindrical =5

1

Numbers in parenthesce refer to the bibliography. @ '
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assemblies of finite dimensions, This approach was motivated by the desire

to minimize the tedium attendant to the compiling of numerical tabulations and

to subssquent interpolations, :
The field of shape factors covered in the present work somewhat overlaps

that treated by others, Their work is thus generalized as well as supplemented

by the compact analytical expressions of the present work, which have been

derived and summarized for cylindrical assemblies of practical interest, The

present work also fulfills the objective of presenting these factors in one

compilation,

Evaluation of Shape Factors

The term "shape factor", or its synonyms, "view factor", "configuration
factor", *form factor’, "F factor", as related to radiant energy transfer between
two surfaces, is dsfined as the fraction of the toval radistion leaving the one
surface in all directions which is intercepted by the other surface. The shape
factor is a function of the shapes and relative position of the two surfaces ;
under consideration. The above definition also covers the special case of the
shape factor of a surface itself,
The method of deriving a shape factor for a pair of surfaces, as explainad

in detail in textbooka(h;ﬁstarta by considering the radiation between differential

elements of each surface, From the differential form the shape factor c¢i finite
assembly is, in general, arrived at by & quadruple integration. In special cases
considerations cf symmetry can limit the process to three integrations.
In setting up the differential form of & shape factor, the following laws
of geomstrical optics ere assumed to applys:
1. The ccaine law,
2. The inverse square law of radiation intensity,

Most engineering materials conform quite closely to these relations. Deviations l

are discussed in the literature (5,8).
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An important and useful consequence cbtained from the definition of the
shape factor is that the algebraic sum of all the shaps factors from one surface
to other surfaces in the assembly is unity. Another useful relation is that the
product of the view factor {rom one surface to a second surface and the ares of
the one surface must equal the product of the view factor from the secona to the
. first surface and the area of the second. These relations imply that, after a
single shape factor between twc surfaces of = configuration has been obtained by
integration, shape factors for other surfaces of the same or kindred configurations
can often be obtained by simple algebraic manipulations. This latter procedure has
been termed "flux algebra" (6).

In addition to the above methods of evaluating shape factors, there are
available various techniques of descriptive geometry (9), optical projection (8),
and mechanical integration (2,6). However, the reported techniques evaluate {he

shaps factor for casss whers one arsa is of differentisl Jimensions.

Tabulation of Shape Factors

The tabulation on the following pages can be considered a dictionary of
shape factors for cylindrical assemblies. Each case deals with one configuration
exhaustively, i.e,, all shape factors, including limiting valuee, psrtaining to
it are given explicitly or can be arrived at by "flux algebra,

The configurations tabulated are:

I Directly opposed parallel circular discs of unequal radii.
11 Cylinder of finite length,

III Directly opposed parallel annuli of unequal radii,

Iv Cylinder and annulus contained in top,
v iwo concentric cylinders of equal radii, one above the other,
VI Two concentric cylinders of equal length, one contained within the other,

VII Cylinder and plane of equal length parallel to cylinder axis, plane outside

cylinder.




VIII Cylinder and plane of equal iength parallel to cylinder axis, plane-inside
cylinder.,

X Two concentric cylinders of unequal radii, one atop the other,

X Two concentric cylinders of unequal length, one enclosed bty the other,

The integrated results for case I have been previously given in the literature (2).
The finite area view factors for cases II, III, IV, V and part of IX are directly
obtainsble from I by "flux algebra®. Cases 1I and V have besen specifically
discussed in the literature (0,11)., Cases VI, VIII and part of IX required new
integrations, enalytical solutione for which apparently have not been obtained
haretofore. Selected values for case VI had been calculated previously by
approximate numerical methods (6). Case X follows directly from VI by "flux
algebra", The results repcrted in case VII are cbtainable by application of the
cosine law to case VI,

In the tabulation the notation Fgyn 1s used to denote the shape factor frou
suriace "a" {o surface "b", Surfaces and geometric parameters are identified
separately in each case. Values of inverse trigonometric functicns are restricted
to the interval 0 toT,

Expressions in closed form of the shape factors were obteined for all the
configurations except cases VII, VI1I and certain geometric ratiocs of IX. For
illustration, selected numerical values for the shape fectors of case V1 are ’ -;ﬁﬁf
included as graphs.

The expreassions of the above exceptions are included for completeness, They
cont&in one integral which may be conveniently approximated numerically by a
sinple averaging procedure.

Expregeions for the shape factor from a differential element of one
surface are alsc given so that the shape factor for an arbtitrary portion of one
surface may be approximated by considering s sufficient number of differential elemeats

within the restricted domain. The shape factors from a differential surface may

also be used Lo numerically approximate factors for other aassemblies than those




tabulated, e.g., shape factors for differential strips of cases VII and VIII may

Te bs used to obtain shape factors for finite surfaces of non-concentric cylinders
of equal length, one within the other, The factors for differential elements
were obtained by integration, "flux algebra", or by d’fferentiation c¢f shape
factors for finiie areas,
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I Directly Opposed Parallel Discs

upper disc

lower disc

radius of upper disc

radius of lower disc

distance between discs
differential sector of 1
differential element of 4
distance between b and disc axis

B O E O

o*=-R*+ L*

1 £
Fp—»2 = 37 1 - J(‘pt + R* + L° )2 _ h/-’!‘ﬂ‘
) a a ] a ay~ 1
1 R R R *
fosz = T2 7 gte o '/(1*_‘:‘;]') "3

2
when R = r, F; "°l~%(%/l‘+ﬁl"t‘%‘£)

Limiting values

L-—0: Fi—yz =1

Fi:zz = 3t/r*
L—=>00: Fl—2 =0
R~ O: Fl—=p =D
R ~—? oa: Fl—p =1
T — O Fl—p =R%/(L* + RY)
r — a0t Fi—; =0

# Equivalent to expression given by Hottel in McAdams, "Heat Transmission", 2nd ed.,
p. 54, McGraw-Hill, 19i2.
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top of cylinder

bottom - f cylinder

curved surface of cylinder
radius of cylinder

height. of cylinder

differential vertical strip of 3
differential element of a
distance between b and 2

MO P TWOH

I* _ )\
Fa—3 = F3-3 = 1 -+~ ﬁ)

I

Limiting values:

Lol Fi—3 =1 Z2—0: Fpap = 3
PB—'PB =]O' 1 L L’“ + 2R2
. s - = P — e
o B e ik R
R——oax Fl-a3 =0
F3,3 =t
R— O3 Fl—3 =1

Fi53 =L




II1 Directly Opposed Parallel Annuli

inner disc contained by top annulus
top annulus

inner disc contained by bottom annulus
bottom annulus

inner radius of annulus

outer radius of annulus

distance between annuli

Ry, > ry

boo i aali=olie BF WS RV RN o

»
v
el

)

2 a ard > A
. %&L-_rs‘_ V/% Ea_r;_L)_ L&hkut*_&_)-hi
i

r? r3

2y _ A L{ 3

r-r) 4:;}) ’El&*k:

Ayt YL * /rT L*
- -E(E R AR R

Limiting values:

L —s»oc Fl—ﬁh

FZ—'L
L — 0: Fl—,




L—>0: Fopy = ° ry >Ry or r >R,
b4 %
.. =H R Ra>rg> 1,
=1 R,>R, and r, > rg
- Ry - rf Ra>R, and 1>r
RE< T ARy 7T

F 1 r* - r3 + I* - : r'l_H;‘%L‘ Ror)T
Bamn 2 Foul = S| v o+ BOF = (g0 [mv + Re ¢ L) = (2R,

. - R Ie®
X‘,——"O . Fl-m -I:t—r—RE—- i'Tﬁ—I‘s—‘

IV Cylinder and Annulus Contained in Top

disc contained in cylinder to
annulus in clyinder top
bottom of cylinder

curved surface of cylinder
inner radius of annulus
radius of cylinder

height of cylinder

n
' 2

[alR= e I VAN NI

+ > R*
- - I*'I'."a..
Limiting values: L. .

r-—R Fo,, s %Q* ""!“""1‘)
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¥y Two Concentric Cylinders of Egual kadii, One Above the Other

1 curved
2 curved
3 top of
4 bottom
R radius
L; height
La height

Limiting values:

L + 2R L
L—3 0 : F = . -
[ .A.—.h 2R Ll + IQR 2R

¥
P h-%‘*zqﬂ
Flse = 3 + 24 R X+ LR

surface of top cylinder
surface of bottom cylinder
cylinder 1

of cylinder 2

of cylinders

of top cylinder

of bottom cylinder



curved exterior surface of inner cylinder
curved interior asurface of cuter cylinder
botton annulus contained between 1 and 2
top annulus contained between 1 and 2
radius of outer cylinder

radiue 2f inner cylinder

height of cylinders

differential vertical stripof 1l
differential element of a

differontial vertical strip of 2
differentiel element of ¢

distance between b and 3

distance between d and 3

ERaoTe &' D WK

R® + r® <os”! r(W* « B> + r*)

- 4r R(W® + R* = rY)

_(L-h' L-wP +R o2 o8 -g)‘-n%r*]
r L - WY +R- « 3 = LOR R{(L - WY + R - 13

Y
- L-w)? + 2p* in-oL(R" - r*) ¢ ‘%}VQ(R‘ - 2r%)
n?m* e (L = W L ~wW)* + L,(RT = r%)



)
d—3 —3l d—i’ .
x_ Ra. . rx d !t+ R’!- . T (E - F}. + rl) r
Fo—3 * S=dcos™ T T - 5 -2 - cos”'>
‘sRY - 1 U@* + R% r¥)"- LBY R( #*+ R* - r*) R

Fb""z - 1- ( ‘b-')B * r\\-’—-ﬂ&)
1 < L* - R
Fp-4l = Fed = E{l - W‘%“ ‘TR

114 2 -Ir - R*
- 5F AL’ + B + r¥)* - (2rR) cos -% T —il

+ (L -R 4 r*)sin~'k -‘I(L* « R*

r 1f{2r 2R - r* ﬁt L* L(R“- r3) + L a‘za
rl-:\} = Fep * l'ﬁ""-— —-ta.n"-i—--— --;‘- sin™! S—
mR L <R L + L(R 5
. . r~——= )
- ~tR* - 2r* WAR™ + L7 _ ®*
L l)]

1
b * Fomg * 3(1-Toy - Foyp)

F}-Ok e ] -',IF—L!—&?-)E‘ - R(Fz_*z + 2F - )]

Limiting values:

Fo2
?2—03
F3-—,
Fa-2
Fz-,j
F3-¢L
‘ r— 0t Fa—e)
Fas2

H -0 O
v =
3
P

~ N OO0V

[ ]

‘_J
A
;e j

[ ]

zie

FQ-—;}

F3—,

Lj, + & . LY
\ﬁl"nﬂ u*)

i # Evaluated with L replaced by W.

| ## Values calculated frem this expression are in agreement with values ootained by
aprroximate numerical methods by Hamilton and Morgan (loc.cit. ).
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OUTER CYLINDER TC iTSELF
OUTER CYLINDER TO INNER CYLWNDER

I.OV- I.OT

. 05+ | o9+
0.8"' Ode
Q.74 Q74
061 06+

} 05 } 054

[’
w04+ 044
031 03-
0.2 0.24
0.14 0.1 4
— —+— p—f—f .}
O 01 0203 04050607 0808 10 © 01 020304050607 0809 10

k7R r/R

Vi Concentric cylinders of equal length, one inside the cther

Lr—=aR: P =1
22 =0
Fo.3 =0
F3—y, =0

B8—L
or E—0:
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VII Cylinder and Plane of Equal Length Parallei to Cylinder Axis, Flane Qutside
Cylinder.

1 curved surface of cylinder
2 plane
3 one-half of plane
R radiuvs of cylinder
L. height of cylinder end plane
S distance from cylinder &xis to plane
T length of plane
a vertical differential strip of 2
b differential element of a
X distance from a to center of 2
7 distance from bottom edge of plane to b
S®R
{ ]r - * - x*+ R* —x(L-Y) - 5% - x* + R*
Foa = = xi\? ﬁ\nq 'XH et R (R LI L R
[ yre s* e x? R jx‘-s‘-x‘+83)]

R SRR R‘F"Zﬁa‘*‘ N s

(% ._l;) St X R gl R AL_L*Y) - 5%~ x*+ R
18

L»y) . s‘ - R+ b,(I:-y)“R‘ E% X L-y)*+ 5%+ x*- B

. Lc:,s r*‘_r‘}}

. _SR cllogmiomSi-xt R
Fa'-ﬂ St 7 x> T AT ST+ xx - R

a X
- M2 st e x> - R ¢ L I*RYc0s”! QJ.L_ Sz-xx* 2
2RL 3% +

]

-n'(_T‘q-s + X3 -R’")

+ (L1 - s - x* + rY) sin"i—

JS‘+ x* 2 b
L




- . 15 e
Limiting values: élv‘;:'}

¥y —0 5 > 2 a 2 y

Y h, - o Looem o Sho x>+ B
or y—L : Fp_,» T oFlees TerEr TR 3]
L. L* + 8*+ x>+ R cog~! R__(L™~ s> x*s R™)

ROAL® + 8% « x* = R¥F+ LLR* ¥ /(1% 5™ x*-R*) I

R

. _ RS ‘

F - _=&S

a-=xL m

. - Frs = Byt

Fgm1 =0

Rs1 =0 o

S—=>o0: Fh=1 =0
Famwl =0

Ra =0

S—-_)R: &"‘1 = "Trl:-'— 2 - ; (‘OS-'Lx-:—l::. 40 COS-HL - 1; .__. xl
- +x1 Tr' yL+,X2 L_y *x,

A IR AT LR R S o)
R y2+ x*F - Ly’R* JRY + 53 (y2 + x3)
e

Loy SI.'-gzl* x> + 2R* meas:C03 ") R(L-y)t- x¥) \\
R L-y) +xJ~ 4L -y)lR m’KL ~yie ﬁ/‘




RL 1 -.L:. - xﬂ-
8RBt Fopy " RT3 “7)°° 1%+ x
(12 -
o __l;- 2 Y 2 -l R L - l
R \/(L + x¥)*+ 4L*R*cos ML,_ . *)
2 > -\ R -T(i* + x3)
+ (L* = x7) sin mr—:-;! 51-'
Fas1 =0
Faee1 = 0

# @valuated atp x = O

VIII Cylinder and Plane of Equal Length Parallel to Cylinder Axis, Plane inside Cyiinder

vertical inner wurface of cylinder
side of plane facing 1

one half of plane

radius of cylinder

height of cylinder and plane
distance from cylinder axis to plane
(taken positive as shown)

vertical differential strip of 2
distance from a to center of plane

Loz o= AV I Sl o

"< o

a,




- _1 - RE= 5+ x G- 8t - x . x(R*~ 5% x® o 52 x\[RT< ST~ xJ+
Fal 1 ‘Rtan ' 5 + tan = + L0, erl" m— =BT )L

1n @55 xf+ 1*, s [Py S xJR*— s*
e Es5 e S RE™~ x

1
-l _5_:_* XVg"- SL_ 2‘TJ

+ cos
RyS*+ x*

R*+ S« R § 2R YR - S x*-~ B ¢ x(R+ S+ x3+ Lﬂ‘/ﬁ
f X’) hR?( D |cos R'th"[(,/R‘ 1‘}()’1‘:]

+ cosBIBs AR- - x> 1) - x(RA+ 8 x*™ AR

R/‘i’_+ x‘k/R‘- 9ie x)te L’j

R -4 SR - St~ + 2R*x* - x(R*+ S*« ®/R*~ S
“(R-S-Jacos \ Rﬁm g -y

N
+ cos=! SLBL: 8- x3 + 2R:xT + x(R%: 5‘+ Q/RT- st
RAT AR 5%+ x)>
s
s
24 = F3yu -~ Fi}-’?'! Faydx
-9
Liniting values:
N S S 4S8 _ w12
3 X—0t Py =1- t 4 [(L + S™)cos” B wL

% S x
\/f?‘+nt+sq‘ LR 8%cos” g—%\—f—griiig

—0: _}_S -|R+x ~R - x R - x}), R +I:'
] 8—0: Fo 3 - Z{ten + tan” 2= + i Rﬂ( —= ”‘J

: (
L

: ulnz—;w—zz}
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IX Two Concentric Cyliunders of Different Radii, One Atop the Other -

inner curved surface of tep cylinder
inner curved surface of bottom cylinder
top of cylinder 1

base of cylinder 2

radius of 2

radius of 1

L. height of 1

Lz height of 2

a differential vertical element of J
b differential element of e

2 height of b from base of 1

Re&r

HOEWN P

La 1{(R _ -
AQ T o— — -— - l
L. & 2 Kr )

(2 receives no direct radistion from 3) 2

3 L 2 2\t t ‘
= I - LJ_LA + /{1 + B__,’ La) . R
Fl—2 uu[ h \/( r 7\ o e

= .1,l L.“__I_.._L - R> + L3 R* + LN\* R?
Fy_, L*(V/Z + = r) 1 —A o+ +..___ra ..l) ";a.

Cilgeen o fEh AR -t g (R =

F ————— .
b=l Mlr/Z+ Lr* \/;‘7(21..&*5)' ~RZ T 2ryL,(L,+ &)

2+ L) R+ e (2« LV cos™! oLl - v (7 A cgrALRe gavL-‘,‘ﬁ
+ p——
2r R 10‘-4\ F-P r - QRT;'\ ZRI‘(§ + LS ]_4-2 + Li + R ¢

- < ART = r?) - 2L,r
cOo6 2RI'L1

N
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Iwo Concentric Cylinders of Unequal Length. One Enclosed by

t.ha Ot.her

19
b
- F dz
Fa-ﬁh i o4
Ly
1 L' L
- Frsz = Tl * 5= 7l - Fau
P imiting values:
Jﬁf b Y N
Z2—C: P,y = l{tm- - r‘., L R* + r? -+ Ly Voealr(R L) :
T\'( Lt 2" /(L:‘; R;+ r1)1 - ml FY R(L; . R% - rl) ‘
A ‘:::5
. ] .:
- cos"(“ﬁ)il} y
/ .
I z"o b Y Y i .'f
. and r—— Rt Foopy, = La_* 2R L1
/ RME+ LR
N L L)L+ 2Ll La
roR R [ >h‘ Ll
—;

P c.ﬁaﬂﬂ,:l""?‘:{ L

r

»2-
(f1g* LaF3g0) -

1 exterior surface of top inner cylinder
2 exterlior surface of middle inner cylinder i
3 extorior surface of bottom inner cylinder »
4L interior surface of top outer cylin‘er !
¢ interior surface of middle outer cylinder
6 interior surface of bottom outer cylinder

7 annulus between tops of 1 and 4
8 annulus between bottoms of 3 and 6
9 annulus between bottoms of 1 and L D
10 annulus hetween bottoms of 2 and 5

R radius of outer cylinders

r radius cof inner cylindere
L, beight of top cylinders B
Lp height of middle cylinders ‘
Ly height of bottom cylinders

9 and 10 are used for calculetion purposes
only and do not shield radiation between ,
cylinders. s

-

F.1 + 2 *Fao 4+ 3 - Fry - Fe—+3l

]

(F10-»1+2 ~Fom2 . 3.
Flow ~ Fg_p)

\ F's on the right side of the above equations may be evaluated from VI (two (chcentric

cylinders of equal leng.h).




